RandomPOD--a new method and device for advanced wear simulation of orthopaedic biomaterials.

نویسندگان

  • Vesa Saikko
  • Jari Kostamo
چکیده

A 16-station wear simulator of the pin-on-disc type, called RandomPOD, was designed, built, and validated. The primary area of application of the RandomPOD is wear studies of orthopaedic biomaterials. The type of relative motion between the bearing surfaces, generally illustrated as shapes of slide tracks, has been found to have a strong effect on the type and amount of wear produced. The computer-controlled RandomPOD can be programmed to produce virtually any slide track shape and load profile. In the present study, the focus is on the biomechanically realistic random variation in the track shape and load. In the reference test, the established combination of circular translation and static load was used. In addition, the combinations of random motion/static load, and circular translation/random load were included. The pins were conventional ultra-high molecular weight polyethylene (UHMWPE), the discs were polished CoCr, and the lubricant was diluted calf serum. The UHMWPE wear factor resulting from random motion was significantly higher than that resulting from circular translation. This was probably caused by the fact that in the random motion the direction of sliding changed more than in circular translation with the same sliding distance. The type of load, random vs. static, was unimportant with respect to the wear factor produced. The principal advantage of using the present random track is that possible unrealistic wear phenomena related to the use of fixed track shapes can be avoided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro wear simulation on the RandomPOD wear testing system as a screening method for bearing materials intended for total knee arthroplasty.

The 16-station RandomPOD wear test system, previously validated for prosthetic hip wear, was used in the simulation of knee wear mechanisms with a ball-on-flat test configuration. This consisted of a CoCr pin with a ground and polished spherical bearing surface (radius 28 mm) against a conventional, gamma-sterilized UHMWPE disk in serum lubrication. The biaxial motion, consisting of x and y tra...

متن کامل

Analysis of UHMWPE wear particles produced in the simulation of hip and knee wear mechanisms with the RandomPOD system

Rights: © 2015 Elsevier. This is the post print version of the following article: Saikko, Vesa & Vuorinen, Vesa & Revitzer, Hannu. 2015. Analysis of UHMWPE wear particles produced in the simulation of hip and knee wear mechanisms with the RandomPOD system. Biotribology. Volumes 1-2. 30-34. ISSN 2352-5738 (electronic). DOI: 10.1016/j.biotri.2015.03.002, which has been published in final form at ...

متن کامل

SIMULATION AND MONITORING OF THE MACHINING PROCESS VIA FUZZY LOGIC AND CUTTING FORCES

On time replacement of a cutting tool with a new one is an important task in Flexible Manufacturing Systems (FMS). A fuzzy logic-based approach was used in the present study to predict and simulate the tool wear progress in turning operation. Cutting parameters and cutting forces were considered as the input and the wear rate was regarded as the output data in the fuzzy logic for construct...

متن کامل

The Quantification of Physiologically Relevant Cross-Shear Wear Phenomena on Orthopaedic Bearing Materials Using the MAX-Shear Wear Testing System

Background: The occurrence of multi-directional sliding motion between total knee replacement bearing surfaces is theorized to be a primary wear and failure mechanism of ultra-high molecular weight poly(ethylene) (UHMWPE). To better quantify the tribologic mechanisms of this cross-shear wear, the MAX-Shear wear-testing system was developed to evaluate candidate biomaterials under controlled con...

متن کامل

Semiconductor Device Simulation by a New Method of Solving Poisson, Laplace and Schrodinger Equations (RESEARCH NOTE)

In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as Poisson, Lap lace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in sever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 44 5  شماره 

صفحات  -

تاریخ انتشار 2011